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Abstract

Context: Epilepsy is a neurological disease that affects more than 50 million
people worldwide, causing recurrent seizures, with a significant impact on
patients” quality of life due to abnormally synchronized neuronal activity.
Method: This article discusses three methods used for signal analysis
in patients diagnosed with epilepsy. Conventional signal decomposition
methods, such as the fast Fourier transform, widely used in signal analysis
based on time series techniques, have some issues when analyzing
nonlinear and non-stationary signals, in addition to difficulties in detecting
low-order frequencies.

Results: To overcome these limitations, alternatives such as empirical
mode decomposition and one of its variants, called ensemble empirical
mode decomposition, have been developed. These techniques allow
observing different oscillation modes through intrinsic mode functions
and instantaneous frequencies.

Conclusions: In this study, the results obtained through the aforementioned
techniques were compared, revealing the impact of nonlinear methods on
the reconstruction of brain activity.
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Resumen

Contexto: La epilepsia es una enfermedad neurolégica que afecta a mdas de 50 millones de personas en
todo el mundo, provocando convulsiones recurrentes, con un impacto significativo en la calidad de
vida de los pacientes debido a actividad neuronal anormalmente sincronizada.

Métodos: Este articulo analiza tres métodos empleados para el andlisis de sefiales en pacientes
diagnosticados con epilepsia. Los métodos de descomposicién de sefiales convencionales, como la
transformada rapida de Fourier, ampliamente utilizada en el andlisis de sefiales basado en técnicas de
series de tiempo, presentan algunos problemas al analizar sefiales no lineales y no estacionarias, asi
como dificultades para detectar frecuencias de bajo orden.

Resultados: Para superar estas limitaciones, se han desarrollado alternativas como la descomposicion
empirica de modos y una de sus variantes, llamada descomposicién modal empirica de conjunto. Estas
técnicas permiten observar diferentes modos de oscilacién mediante las funciones de modo intrinseco
y las frecuencias instantdneas.

Conclusiones: En este estudio se compararon los resultados obtenidos mediante las técnicas
mencionadas, revelando el impacto de los métodos no lineales en la reconstruccién de la actividad
cerebral.

Palabras clave: electroencefalograma, descomposicién epmirica de modos, epilepsia, frecuencia
instantdnea, funciones de modo intrinseco, metodologia, no lineal, no estacionario, modos de oscilacién,

convulsiones
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1 Introduction

Throughout the 20th century, important advances were made in the study of epilepsy, thanks
to the use of increasingly sophisticated techniques and tools (1). Among these techniques,
electroencephalographic (EEG) monitoring is one of the most widely used for the diagnosis and
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detection of epileptic seizures (2). EEG monitoring involves recording the electrical activity of the brain
via electrodes placed on the scalp, and it can provide valuable information about epilepsy-related brain
activity (3). However, the processing and analysis of EEG data must consider the difficulties associated
with large volumes of information (4). Even today, medical professionals identify epileptic seizures
by visual inspection, aided by the continuous monitoring of EEG signals, which is time-consuming
and subject to human error (5). In this context, several signal analysis techniques have been developed
to identify epilepsy-related patterns in EEG records, where the reconstruction of brain activity from
the resulting frequency bands is performed (6). Neuroscience has established five frequency bands
associated with epilepsy: the delta band (0-4 Hz), the theta band (4-8 Hz), the alpha band (8-14 Hz), the
beta band (14-30 Hz), and the gamma band (30-150 Hz) (7).

The identification of epileptic seizures still represents an unsolved challenge in the field of
neuroscience, which is why different techniques are still being developed to support the recognition
and treatment of this pathology (8,9). However, due to the complexity and variability of seizures,
different methods and tools are required for identification and classification tasks. Therefore,
different methodologies have been developed which are based on the use of brain signal recording
techniques, such as electroencephalography (EEG), magnetoencephalography (MEG), and functional
magnetic resonance imaging (fMRI), as well as signal processing algorithms and machine learning
techniques (10-12). These tools have proven to be effective in the identification and classification of
seizures, allowing for a better diagnosis and treatment of epilepsy. These tools, derived from signal
extraction methods, are mainly the Fourier transform (FT), the wavelet transform (WT), and the Hilbert
Huang transform (HHT), as well as their variants (13). Depending on the signals to be analyzed, each
of these methods has strengths and weaknesses (14).

The FT and its variants are ideal processing techniques for identifying signals in the time domain,
aiming to transform a complicated problem into a solvable one. The FT is a basic tool in the analysis of
non-periodic signals that have finite energy (15). However, it exhibits some issues when characterizing
signals in short periods of time, as it is difficult to interpret the results (16).

The HHT has gained popularity in the analysis of nonlinear and non-stationary signals. It was
initially used to study ocean waves, and its application has now been extended to various fields (17).
A fundamental part of this method is empirical mode decomposition (EMD), a technique used for
pattern identification in non-stationary and nonlinear signals (18). EMD can decompose signals into
basic components known as intrinsic modes, which facilitates the identification of key patterns in signal

analysis and frequency identification (19, 20).
EMD, based on the HHT, also reports some issues related to the mode mixing problem, which is
associated with the mechanism for extracting mono-components from a multi-component signal. As a

result, only modes that clearly contribute their maxima and minima can be identified via EMD.

When a mode cannot clearly contribute with extremes, EMD will not be able to separate it into an
intrinsic mode function (IMF), and it will remain mixed with another IMF, turning it into noise and
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causing an inadequate interpretation of the results (21). To solve this problem, a variant known as
ensemble empirical mode decomposition (EEMD) is employed, where a signal called adaptive noise is added
to each of the IMFs obtained via EMD (22).

In recent decades, considerable progress has been made in the study of epilepsy, including
the advancement of sophisticated techniques for seizure detection. In particular, nonlinear and
non-stationary signal analysis methods have shown effectiveness in automatic seizure detection, and
they are often used to solve problems that cannot be solved via traditional approaches.

This paper compares three different methodologies for signal decomposition: FFT, EMD, and EEMD.
The database is sorted, aiming for an organized dataset that aids in finding the most appropriate
method, as well as the frequencies of interest for the detection of epileptic seizures. This document
is structured as follows: Section 2 presents the signal decomposition methods and a description of the
database used. Section 3 shows the results obtained with the proposed methodology, and Section 4
analyzes them. Finally, the conclusions derived from the study are stated in Section 5.

2 Methods

2.1 Dataset

The dataset used in the signal classification study was acquired from a freely available medical
research data repository called Physionet, which contains signals collected from the scalp of intractable
seizure patients at Boston Children’s Hospital. This information has been published on the Physionet
website (23).

EEG signals were captured by placing electrodes on the scalp of patients using various
configurations (24). The patients included both males and females in the ranges of 3-22 and 1.5-19 years
old, respectively. The sampling frequency used was 256 samples per second, with a resolution of 16 bits.
The nomenclature of the International 10-20 System was used to define the position of the electrodes on
the scalp, with 23 channels available for each analyzed patient.

Fig. 1 shows the location of the electrodes according to the International 10-20 System Configuration.

Experts in the field noted the onset and end of epileptic seizures for each of the recordings (26). In
total, 941.6 h of interictal activity and 3 h of ictal activity were analyzed, which corresponded to the 181
seizures described in the database. From this database, we selected the signals with epileptic seizures to
perform signal decomposition, obtaining 80 samples.

2.2 Signal decomposition methods

For many years, Fourier series analysis was ideal for studying signals in different fields, and it was
assumed that conventional methods were sufficient to solve a particular problem (27). With the rise
of new technologies, some issues emerged: the composition of signals was affected as more complex
signals were being processed, which were assumed to be non-linear and non-stationary. These issues
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Figure 1. Location of electrodes according to the International 10-20 System (25)

could be solved via traditional methods.

Thus, new signal decomposition methods were developed, such as the fast and the short-term
Fourier transforms (FFT and STFT), which performed better but had some limitations (28).
Subsequently, HHT emerged as a solution to problems that could not be solved with the previous
methods, and researchers were refining and perfecting new strategies that generated better solutions. In
this context, EMD and EEMD, nonlinear decomposition methods each with a better response than the
previous one, were created. A brief description of FFT, EMD, and EEMD is provided below.
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2.3 The fast Fourier transform (FFT)

The FT is one of the most widely used tools in engineering applications where the behavior of
dynamic systems and periodic signals is studied in the time domain while considering their frequency
content (29).

The FFT is an algorithm that allows understanding the behavior of a dataset in the frequency
domain, based on the calculation of the discrete FT. Nevertheless, it has disadvantages in spectral
analysis, such as aliasing and leakage, as well as with regard to the computation times needed to
process data. In addition, it is difficult to detect low frequencies due to its inefficient resolution (17).

Signal processing and learning methods such as machine learning are valuable tools in EEG
signal analysis, as they have been developed to diagnose seizures and epileptic attacks. The research
conducted by (30) allowed extracting a set of features from the original signals of two datasets to
be analyzed using FT and EMD, with the purpose of classifying and evaluating EEG signals. These
authors proposed a methodology to compare the behavior of signal analysis methods using classifiers

in order to obtain specific features in the time domain.

2.4 The Hilbert-Huang transform (HHT)

The development of HHT arose from the need to describe distorted nonlinear waves combined with
variations of the signals that naturally occur in non-stationary processes (31). HHT integrates EMD and
HT (developed by Huang). In this case, the EMD method decomposes signals into single components
called IMFs, from which it is possible to obtain the amplitude a(t) and instantaneous frequencies. This
method is widely employed for extracting information from a set of nonlinear and non-stationary data
(fi(£)) (32). After this procedure, HT is used to obtain the corresponding Hilbert spectrum (HS).

The HS is a 3D representation of the instantaneous amplitude and the instantaneous frequency for
each IMF as a function of time. The HS is defined as follows (22):

ai(t) for f=rfi®)
Hi(f7t) £ (1)

0 otherwise

For a general multi-component signal, the HS is defined as the sum of the Hilbert spectra of all the
IMFs, as indicated in

H(fat)éZHi(fat) (2)

where N is the total number of IMFs.
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2.5 Empirical mode decomposition EMD

EMD is a tool for the analysis of nonlinear and non-stationary signals, which was proposed by
Huang (33) and aims to decompose a nonlinear and non-stationary signal into a sum of IMFs while
satisfying the following criteria (19,20):

1. In the entire data set, the number of extremes and the number of zero crossings must be equal or
differ by 1 at most.

2. Atany point, the mean value of the envelopes defined by the local maxima and the local minima

is zero.

The second condition implies that an IMF is stationary, which simplifies its analysis. However, an
IMF can exhibit changing amplitude and frequency modulation (34).

EMD has some issues, such as the presence of oscillations of unequal amplitude in one or more
modes and similar oscillations in different modes, a phenomenon known as mode mixing. The screening
process can be summarized in the following algorithm: decompose a dataset x(t) into IMFs z,,(t) and a
residual (), such that the signal can be represented as:

w(t) =) walt) +r(1) ®)
EMD has been adjusted to reduce the mode mixing phenomenon and thus ensure a better
identification of the different frequencies in a process or system (35).

The EMD algorithm for a signal can be summarized as follows (32, 36):

1. Identify all extremes in x(t).

Calculate an upper envelope ¢, (t) and a lower envelope ¢,(t) via interpolation.
Determine the local averages as m(t) = (e, (t) + em(1))/2.

Obtain the residual r(t) = z(t) + m(t).

Iterate until the number of zeros equals the number of zero crossings.

Subtract the obtained IMF from the original signal.

N o ok »w DN

Iterate over the residual until the function becomes monotonic.

The authors of (30), who used FFT and EMD for signal decomposition, state that it is useful
to employ EMD and subsequently extract the IMFs defined by the components of amplitude
modulation (AM) and frequency modulation (FM). Nonlinear and non-stationary complex signals can
be decomposed into a finite number of IMFs in the spectrum of the Hilbert transform. The authors
present the different decomposition modes of EMD. Different classifiers are trained and evaluated to
find the best methodology.
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2.6 Ensemble empirical mode decomposition (EEMD)

EEMD arose as an alternative to eliminate mode mixing, the main issue of the EMD. This approach
consists of adding noise to the signal, known as white Gaussian noise of finite amplitude, where the real
IMEF is found as the average of several IMFs (37). Assuming that the added noise is different for each of
the IMFs, averaging them over a certain number of attempts should cancel the noise, obtaining a single
part and the true IMF.

The proposed algorithm for EEMD is:

1. Add white noise to the signal.
2. Decompose the data added with white noise, using the EMD to obtain the IMFs.
3. Repeat steps 1 and 2 with different white noise in each iteration.

4. Obtain the average of the corresponding IMFs from the decomposition as the final result.

A study conducted by (6) analyzed EEG recordings using EMD and EEMD with several classifiers
to identify the IMFs that best represented an original signal. After the IMF selection process, a set
of features was created using IMF1, IMF2, and IMF3. According to the authors, the objective was to
propose a hybrid method for IMF selection and explore the effect of these IMFs. Their work evaluated
the advantages of using EEMD, decomposing versions of signals with added noise to address EMD’s
mode mixing issues. This approach yielded better results.

2.7 Instantaneous frequency (IF)

The concept of instantaneous frequency has become popular due to its effect on systems related to signal
analysis, especially in nonlinear systems, where physical parameters derived from the signals are often
characterized. Regardless of their behavior, most signals used to be analyzed via FI, which generates
time-invariant frequency and amplitude values (35,38). As per the analysis proposed by Fourier, the
frequency of a signal is derived from its period. However, the frequency of a non-stationary wave is
hard to define. It is also possible to define the frequency as the angular velocity associated with the
phase change rate. If it is possible to define a phase for a signal, it is possible to calculate its frequency
(ie., IF) (17).

3 Results and discussion

To evaluate the performance of the aforementioned decomposition methods, three signals from patients
suffering from epileptic seizures were taken. By analyzing the behavior of the original signal, maximum
values could be identified at different points, as shown in Fig. 2, which shows the three original signals
corresponding to said patients.

In signal 1, the maximum value was observed at time instant t = 1400 s. In signals 2 and 3, the
maximum value was detected at t = 1800 and 700 s, respectively.
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Figure 2. Original signals
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3.1 Signal decomposition using FFT

The FFT method was first implemented in MATLAB. Fig. 3 shows the results obtained after performing
signal decomposition on three seizure signals in only one channel. The objective of this article is to
show the frequency detected by each of the methods. Thus, three channels were selected, which allow
for multiple frequencies.

Signals 1 and 3 have several similarities; three maxima stand out at the same time instants i.e., t =
200, 1500, and 3000 s. This can be used to determine the points where seizures may be detected. After
the instant t = 1500 s, the spectra does not grow as abruptly as before. Signal 2 does not exhibit notable

maxima.

3.2 Signal decomposition using EMD

With the EMD method, the IMFs of each signal are obtained. EMD works as a natural filter of the
original signals by separating them into frequency components, making it possible to observe the
signals of interest. Fig. 4 shows the results obtained by applying EMD to the three signals.

In Fig. 4, IMFs 5 and 6 of signals 1, 2, and 3 clearly show the frequencies of interest for seizure
detection. IMF 5 has maximum values of 15-17 Hz, and IMF 6 has maximum values of 8-9 Hz,
representing the alpha and beta bands, respectively, i.e., where seizures may occur and where seizures
may be initiated. Meanwhile, IMFs 1 and 2 show noise activity, and IMF 4 shows a better separation
between modes.

Subsequently, the results corresponding to the IFs of the analyzed signals are obtained. Fig. 5 shows
these results.

According to Fig. 5, the IF 5 of signals 1, 2, and 3 shows a maximum frequency value that oscillates
between 10 and 15 Hz. This is in the alpha band and can be interpreted as an instance where a

convulsion occurs.

3.3 Signal decomposition using EEMD

Fig. 6 shows the results obtained with EEMD, where noise is added to each of the signals to obtain a
better separation of the IMFs and reduce mode mixing.

In Fig. 6, IMFs 4 and 5 show the frequency bands where epileptic seizures may be detected,
confirming the results obtained with EMD and IF in Figs. 4 and 5, respectively.

Based on the results obtained via the three signal decomposition methods, the following can be
stated. Regarding the use of FFT, the results in Fig. 3 do not allow for a clear visualization of the signals
of interest due to interference. Although it is possible to observe two maxima in signals 1 and 3, their
meaning cannot be determined, which makes it difficult to interpret the results and provide a conclusive
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Figure 3. Signal analysis using FFT

answer. The analysis supports the position of (14), suggesting that each of these methodologies has

both advantages and limitations. One of the disadvantages associated with decomposition is its low

resolution in the time-frequency domain, which is evident in Fig. 3. In addition, the results of the FFT

show a low resolution due to the non-linearity of the signal.
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Figure 4. Signal analysis using EMD
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Figure 6. Signal analysis using EEMD
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Furthermore, as emphasized in (15), the results demonstrate the challenges associated with
interpreting signals using short time intervals due to their complex dynamics.

In this vein, FFT is not the best method to decompose non-linear and non-stationary signals where
harmonic and non-harmonic components can appear. While FFT is still a valuable tool in many signal
processing scenarios, its compatibility with signals exhibiting non-linearity and non-stationarity is
notably sub-optimal. Thus, alternative methods that provide improved precision and adaptability to
such signals should be explored.

On the other hand, when obtaining IMFs and IFs via EMD, the neuronal activity of each channel
shows, in greater detail, the frequencies of interest for epileptic seizures occur. In this case, the alpha
and beta frequency bands are those of greatest interest. The beta band is represented in IMF 6, and the
alpha band in IMF 5. These frequency bands represent the main brain activity for our study, since they
represent the onset and course of a seizure. According to the figures, the frequency increases and the
amplitude decreases in IMF 5, whereas, in IMF 6, the frequency decreases and the amplitude increases.

Applying EMD has yielded notably improved results compared to the FFT method. Therefore, the
authors of (30) chose to employ FFT and EMD to identify the most appropriate method for detecting
epileptic seizures. Upon verifying the results, it became evident that employing EMD resulted in
greater clarity and improved interpretation. These findings were further corroborated in (31), where
the acquisition of IMFs validated the significance of conducting this procedure, as it enables the
decomposition of a finite number of IMFs in the spectrum of the Hilbert transform, integrating both HT
and EMD.

EMD’s adaptability to non-linear and non-stationary signals provides a more accurate
representation of the underlying components, enhancing the precision and interpretability of the
results.

Using EEMD confirms the results obtained with the IMFs and the IFs of signals 1, 2, and 3. In
IMEF 5, the alpha band is of greater interest than the others because it enables the clear visualization
of neuronal activity over time. Utilizing EEMD in the analysis yields better results than EMD and
FFT. EEMD’s ability to address non-linear and non-stationary signal characteristics, coupled with its
noise robustness, significantly improved the quality and accuracy of our findings. In comparison with
EMD, EEMD’s ensemble approach introduces enhanced stability and precision with regard to mode

extraction, mitigating issues such as mode mixing.

Validating the results of (6), we found that, by employing EMD while obtaining the IMFs, the EEMD
yields results of higher reliability than those provided by EMD alone. These findings reinforce the notion
that integrating EEMD into the analysis represents a significant advance in terms of the quality and
accuracy of the results, which has important implications for the practical application of these techniques
in the field of epileptic seizure detection and diagnosis.
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Table I shows the most significant frequency values obtained using each of the signal decomposition
methods for epileptic seizure detection. FFT does not allow determining specific frequency values,
hindering the interpretation of the results.

Method Frequency [Hz]

IMF5 15-17
IMF6 8-9
IF IF5 10-15
IMF4 2-18
EEMD
IMF5 5-10

Table I. Frequency values obtained with the studied decomposition methods

Finally, Table II shows the strengths and weaknesses of the decomposition methods discussed

above.
Method Strengths Weaknesses
Limited applicability for nonlinear
Efficiency PP Y
FFT and non-Stationary signals
Widely used Sample size constraints
Accuracy Fixed time frequency resolution
Adaptability to nonlinear and . ) )
Computational intensity
non-stationary signals
EMD
Intrinsic mode decomposition Subject to mode mixing
Higher time-frequency precision Parameter dependency
Robustness to noise Increased computational load

EEMD  Stability through ensemble averaging Complex parameter tuning

Enhanced signal extraction Dependent on domain knowledge

Table II. Strengths and weaknesses of signal decomposition methods

This study compared the efficacy of three signal processing techniques for epileptic seizure signal
analysis. FFT excels in revealing frequency components but may miss nonlinear features. EMD captures
nonlinear and non-stationary characteristics but is sensitive to noise, and EEMD, as an extension of
EMD, offers improved noise robustness and adaptability to non-stationary signals. This comparative
assessment aims to elucidate the strengths and limitations of these methods, aiding researchers in
selecting the most suitable approach for their specific epilepsy research needs.
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4 Conclusions

According to the state of the art and the research background, the brain can exhibit activity at
frequencies between 0.5 Hz for Delta waves and 45 Hz for Gamma waves, and, by correctly detecting
these frequencies, it is possible to diagnose different pathologies, with epilepsy being one of the most
interesting. The use of time-frequency decomposition methods for EEG signals is generally applied in
the study of brain processes associated with activity at certain frequencies, and it constitutes one of the
main advantages of EMD and its variations (i.e., EEMD).

EMD has shown the ability to separate signals using time-frequency decomposition in various
contexts. For example, this method is widely employed to analyze nonlinear and non-stationary signals
in fields such as medicine, power systems, image processing, weather forecasting, and climate analysis,
among others.

The Fourier transform is a widely used method in different applications. However, it has some
issues when it comes to dealing with low-order frequencies, at which epilepsy is detected. With the
results presented in this article, it should be possible to establish a way to adequately detect epileptic
seizures by calculating instantaneous frequencies.
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